Errata to "The effect of an axial temperature gradient on the steady motion of a large droplet in a tube" by S. K. Wilson J. Eng. Maths 29 (1995) 205–217

Since this paper was published, two minor inaccuracies in it have come to light. Firstly, a failure to continue the numerical solution of Equation (50) to sufficiently large values of Z means that the numerically-calculated values in Table 1 are not accurate to all the significant figures shown. The correct values are given below. Note that the differences from the published results are small (no more than approximately 2% in the worst case), disappear in the limit $S \rightarrow \infty$ and are not discernable on the scale of Figure 2. Secondly, the factor $(1 + S)^{\frac{1}{3}}$ was mistakenly replaced by unity in the exponents in Equations (51) and (59). Thus Equation (51) should be

$$H(Z) \sim 1 + \alpha \ e^{(1+S)^{\frac{1}{3}}Z}$$

1

with a similar modification to Equation (59). Note that neither of these mistakes affects any of the other results in this paper.

S	 M	C_0	ĥ~	Ŵ
10 ⁻⁴	7.475×10^{-5}	0.6431	1.338	2.676
10^{-3}	7. 46 5 × 10 ⁻⁴	0.6440	1.340	2.681
10 ⁻²	7.361×10^{-3}	0.6531	1.358	2.730
10 ⁻¹	6.493×10^{-2}	0.7404	1.540	3.234
1	0.3326	1.445	3.007	9.020
10	0.8789	5.470	11.38	136.5
10 ²	1.940	24.78	51.55	5259
10 ³	4.189	114.8	238.7	2.392×10^{5}
10 ⁴	9.028	532.5	1108	1.108×10^{7}
10 ⁵	19.45	2472	5141	5.142×10^{8}
10 ⁶	41.90	1.147×10^{4}	2.386×10^{4}	2.386×10^{10}
107	90.28	5.325×10^{4}	1.108×10^{5}	1.108×10^{12}
10 ⁸	194.5	2.472×10^{5}	5.141×10^{5}	5.141×10^{13}

Table 1. Revised values of \overline{M} , C_0 , \hat{h}_{∞} and \hat{W} for a range of values of S.